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ERRATA AND ADDENDUM 
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Based on Energy Criteria",j.E.Greenspon (J G Engineering Research Assoc- 
iates) Contract No. DA 36-034-ORD-3081RD, Tech. Rep. No. 3, Feb. 1963. 

p. 9. Eq. [13] and [14] should read 

*(  and A   are correct as shown in report and ^"^ * ^£ 

>r^.--tär&)-t&tä)^&*-^^^ .14, 
Omit footnote at bottom of p. 9 ****<(Jm. *3y 
p. 10, Eq. [13aJ should read 

p. 11, Eq. [17] and [18] should read 
[13a1 

o(  and /£   are correct as shown in report and m\ 

(17] 

Now define a new variable »'-£ and let **/='<*/;/rtr/^)then the integrals can be 
written in terms of dimensionless quantities as follows: 

We first combine the elastic and plastic cases in one set of integrals 
noting that 

a. For the elastic case >A = o 
b. For the plastic case ^ - *i. 

The combined integrals are then 

[40] 
where 

(over) 



Thus the integrals are dimensionless quantities which are functions 
of the diirensionless ratios **/*/&, j  ^4 ,       ./zc*. 

Equation [40] is the form that the electronic computer will use 
to compute the integrals numerically for a given shape ^»*J^/j 
given parameters fyjl       ^Sxu. anc^ a series of values of ^^ö/ä • 



It should be noted that all expressions in the report pertaining to 
the plastic region are correct if C,, >"-' Gj    .   This condit on holds 
for a large number of cases in view of the fact that we are concerned 
with large deformations and large plastic strains. If this condition 
is relaxed then expression [10] must be rewritten as 

<7iJeL i-J aic/tijdZ 

•-•jt 

The last term must be subtracted from all \/     expressions if we are 
dealing with small plastic deformations ( i.e. if 4^ Ä C^  ) 
In the example worked out in the report, eq. [32] would then become 

so that the new term is negligible if  -f£  > > ^ 

For very thin shells undergoing very large plastic deformations if -A= / ^ 

V^Jo  J       J±^ Asj^J)  ^ctefc/*- (see [16]) 

For some physical cases *'vf^>*
</ sfe^^  /  so that 
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ABSTRACT 

A theory for the dynamic elasto-plastic deformations of thin shells 
is presented.  The deformation is obtained by equating  the energy 
input to the energy absorbed by the structure.  Large deflections 
and strain hardening are considered.  The theory is applied to the 
case of a shell undergoing axially symmetric collapse. 
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(Octahedral shear stress is /2. ^j*. 

«»      ■ if\l(^-e7)^ C^-^t)^ tei -^; V 4^v^ * V y»S) 

O *f     are  direct 
esses 

^ CTT J]^ 2ts ^f Z^x    six components  of  stress;       O 
0J     '    O* 7 -* stresses -   'Z'j      are  shear  str 

£m £1 &* )x-  •»* »Ajt   six components  of   strain;    £"'j     are  direct 
g strains  - (TS are   shear  strains 

/C bulk modulus   of material 

2 volume  of   the  body 

£ £   Y   strains  in   the midplane  of  the   shell 

2- radial  distance   from  the midplane  of the  shell   to  any element 
in   the  shell 

a: <^       cylindrical   coordinates  describing  the position  of  the  element 
along  the   length   ( X. )   and  around  the periphery   ( ^ ) 

y     m *¥ 
CL radius of the midplane of the shell (mean radius of the shell) 

H" tr X   curvatures (K  ) and twist (TT) associated with bending and 
twisting of the shell element 

U SSTAAT  displacements of the shell element; U  -   longitudinal, /OT- 
tangential, A^T -   radial 

£ modulus of elasticity of shell material 

-x) Poisson's ratio for shell material (assumed S  for plastic region) 

toC^i)        function of G± 

£s strain at which yielding in pure tension would occur 

OT yield stress in pure tension 

^     parameter involved in the plastic-linear hardening stress 
strain law; it is the slope of the ö^-^ curve in the plastic region 

s/C thickness of the shell 

-1- 



Jc~ length of the shell 

y energy absorbed by shell 

#IM element of mass 

H-tr velocity of mass in radial direction 

JO impulse p ?r unit mass 

P mass density of shell material 

T initial Kinetic energy put into shell by pressure pulse 

X^ total impulse 

Xa amplitude I 

-^tP pressure applied to shell 

yj^ amplitude of x*-r 

sp amplitude of *p 
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I. Introduction 

Shell theory, especially the dynamic plasticity of shells, is 
in such a state at the present time that one can only hope to 
obtain approximate solutions to the problems that are of prac- 
tical interest today.  Very little work has been done on the 
dynamic plasticity of shells due in part to the mathematical 
complexities of the theory and probably due to the lack of 
experimental evidence with which to check the results of the 
theoretical developments.  Fortunately the electronic computer 
will enable us to overcome some of the mathematical difficulties 

Extensive use is being made of shells in missiles and submar- 
ines.  Therefore more complete experiments are being conducted 
on these structures and more experimental evidence is becoming 
available to those working in the field of dynamic elasticity 
and plasticity.  More theoretical development on this problem 
is needed and it is for this purpose that the present report 
has been written.  This report will contain an approximate 
method for predicting large elastic and plastic deformations 
of shells under static and dynamic loads. 

II. Theory 

A. Energy relations 

Assume that the shell is exposed to an impulsive load of 
short duration which imparts an initial velocity to the 
structure.  The problem is then equivalent to one in which 
the structure has an initial Kinetic energy. ' '  If the 
energy absorbed b> the shell is plotted against the lateral 
deflection in both the elastic and plastic regions, then 
according to a previous reference  there can be a region of 
instability in the elastic region which corresponds to snap 
buckling of the structure.  If no instabilities occur in 

Wiuner, et al "Response of Plates and Shells to Intense 
External Loads of Short Duration, " WADD Technical Report 
60-433, Apr. 1960 (Mass. In. Tech.) 
Pian, T. H.H., "Dynamic Response of Thin Shell Structures," 
Plasticity, Proc. Sec. Symp. on Naval Struct. Mech., 1960, 
p. 443. 
Radkowski, P.P. et al, "Studies on the Dynamic Response of 
Shell Structures and Materials to a Pressure Pulse," Avco 
Corp., 1961, AFSWC-TR-61-31 (II) 
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the elastic region, when the structure goes plastic there could be 
a plastic instability point.  If this point does not exist and the 
structur  is loaded further then there should be a point at which 
a slight increase in energy will correspond to a relatively large 
increase in deflection.  This should happen when the structure is 
about to collapse. 

The initial kinetic energy can be determined in terms of the applied 
impulse.  This impulse will in general turn out to be a nonlinear 
function of the lateral displacement if large strains occur and if 
the corresponding large deflection expressions are employed.  It 
will be assumed that all the initial kinetic energy that is imparted 
to the shell by the impulse goes into energy of deformation.  The 
final deformation will occur when the shell comes to rest so that 
the final kinetic energy is zero. 

4 
Schuman  has conducted experiments on a large number of aluminum 
and .i eel cylinders subject to nonuniform blast loading.  He found 
two characteristic types of failure which are shown in Figure 1. 

I BMst 

-   t 

Fig. la. Failure Type 1 

y 

Fig. lb. Failure Type 2 

'irpublishcd data on tests performed by William Schuman at -he 
Ballistic Research Laboratories at Aberdeen Proving Ground. 
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It seems that failure type i is a collapse with a failure hinge at 
the center of the cylinder.  Failure type 2 resembles a buckling 
type failure.  Whether or not these types of failure fit into the 
catagories of plastic collapse and buckling instability remains to 
be seen.  It is proposed to use these general failure shapes found 
experimentally as the deformation patterns in the energy expression, 
In order to determine the final plastic deformation due to a given 
impulse the energy-deflection relation will first be computed. The 
initial kinetic energy will then be equated to the energy of de- 
formation absorbed by the shell.  The applied impulse can ha  written 
in terms of the initial kinetic energy as will be shov.n later in 
the report.  The final result will be a curve cf applied impulse 
as a function of final deflection.  This curve will implicitly con- 
tain all the nonlineanties in the strain-deflection relations and 
all the details of the elastic-plastic stress-strain law.  The re- 
gions of buckling and collapse can be determined from the energy- 
deflection curve as shown in Fia. 2 

-Zoj-/"«. 4>./#^   Po •^1' 

Dcflec+to*- 

Ac>pr*iii***'ht.     Cf/fe-fSC     Poinf" 

CD IIck* S€ 

OifllctlcrK 

Fig.   2   Buckling  and Collapse Carves 

The  deformation  energy   (or work done  by  the   internal   forces)   per 
unit  volume  of an  elastic-plastic  body   can be written5 

^Iliouchine,    "Plasticite   (Translated   from the  original   Russian  into 
French),   Edition  Eyrolles.    1956.   p.   98. 
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[1] 

^ • ^ y- <5^ ^ (f 4 /C s   du//C     /V^tf/u/uf. 

The curve of   G^" »/^. ^^    describes the stress-strain law of 
the material as shown in Fig. 3 

Fig. 3 General Stress-Strain Law 

Assuming an incompressible material ftf ~o)   and particularizing 
our analysis to a thin shell 
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[2] 

The notation is as shown m Fig. 4 

Fig. 4 The Shell 

ine expressions for the strains are0 

'Love, "Mathematical Theory of Elasticity," Fourth Edition, Dover 
Publications, 1944, p. 529. 
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where £,, €^j   )r     are the midsurface strains, £    is the radial 
distance from the midsurface to any element within the thickness 
of the shell and K    *f*.    T    are the curvatures and twist.  The 
values of ^i     CrA ir      are (allowing large deflections) ' 

[4] 

and the curvatures and twist are 8 

*j* ax<>4> 
[5] 

A gentiral deformation type elastic-plastic stress-strain law can be 
written5 (assuming a Poissons ratio of H) 

[6J 

where 

"JT- F /"/- CUC€i)] [7] 

7 
Fung and Sechler, "Instability of Thin Elastic shells, " Proc. of the 
First Symp. on Naval Struct. Mech.. 1958, p. 118. 
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xn which CuCti)- O       for the elastic region.  Now neglect all 
terms in the strains which contain U    and /xT ,   assuxning that 
they are small compared to x*/" and its derivatives* 

Then 

[8] 

Consider an elastic-linear harde.. ng incompres•ible material 
which has a stress strain law as shown in Fig. 5 

** 

<%= ezs 

Fig. 5 Elastic-Linear Hardening Law 

*This assumption seems to have been excellent in predicting very 
large strains in panels, see J. Greenspon, J. Aero/Space Sciences, 
27, 5, May, 1960. 

♦»Aluminum and steel both come close to being linear hardening 
materials - see ANC-5 "Strength of Metal Aircraft Elements," U. S. 
Government Printing Office. 
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Elaste   Cose c^cci) =o £cr     Ci < C# 

It is planned to use this stress-strain law.  The energy-deflection 
relation will then be computed and a search will be made for regions 
of instability in the elastic and plastic --egions and a region of 
collapse in the plastic regime.  If the value of enerqy correspond- 
ing to instability is smaller than the amount corresponding to col- 
lapse, the structure will buckle first; however if the collapse energy 
is smaller than the energy corresponding to instability, the struc- 
ture will collapse first. 

Going back to the general expression for the energy, and substituting 
the stress strain law of eq. [9] 

~de.ldZ 
is* [10] 

Substituting the expression for C^ from [2] 

-8- 



Using the strain expressions [8] and integrating with respect to Z 

The strain terms in equation [8] which involve 2 are associated 
with bending, the other terms are the membrane strains.  For very 
thin shells sometimes the bending strains can be neglected and the 
resulting energy expression will be* 

is**' 

fS 

Some materials can be considered perfectly plastic.  For this case 
X ~    I in the plastic region and 

V//'^'^/^"^ 
[16] 

'Obtained  by  setting   /&f>ct<fi) ~0     in   [13J;   note  that  L'Hopital's 
rule  must  be  applied  to  the   second bracket. 
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The energy of deformation in the elastic region can be obtained from 
(13] by letting A =0 • Howaver a more accurate expression for the 
elastic region can be obtained by starting with the elastic stress 
strain law for any Poissons ratio, i.e. 

^■A^^v 
OZ  r 

(6a] 

The elastic energy is 

y*'4jl§7lC**^***Mfif+€t+j£>^)€t2 
[12a] 

Thus 

^/ *T 

^V/iTfo L***'**)* ^Hr^^J-^^       [13al 

where 

*.**)* i(%T*i(^&T-<&t**iC&T-*(** 
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In some cases the deformation of the shell mav be axisymmetric and 
the deflection W will then be independent of <fi     .     For this case 
expression [13] becomes 

3kVl . [17] 

X 
where 

^•f*j&r [i81 

This concludes the basic energy equations.  The relation between 
the kinetic energy input and the applied impulse will now be con- 
sidered. 

B  Impulse-Energy Relation 

Let I be the impulse per unit mass applied to the shell.  The impulse 
momentum relation for an elemental mass 0/**  can be written 

\jr plr*   rr -Tc/^ [19] 

where A^J" is the lateral velocity imparted to the mass by the impulse* 
Thus 

H<r = X [20] 

The kinetic energy imparted to the shell is 

*Only the lateral velocity AAS   is being considered,  W and ^v/" are 
being neglected. 



r= /f JPX^V^ r ^JßJLX^A [21] 

where fJL    is the mass per unit area and jA    is an elemental area 

The impulse can vary over the surface of the shell m the same way 
that the pressure can vary over the surface.  Therefore write the 

impulse as 

Tf^f) = T0*r*tf) [22] 

Thus   from   [21] 

T~if4TSff*fKt)€iA j   - -r- - [23] 

Equating the initial kinetic energy to the energy of deformation ab- 
sorbed by the shell the expression for the xmpulse per unit mass be- 
comes 

■o 
T.  = \/ V       2 

M//**,,)S* 1241 

The total impulse on the shell will then be 

WW^/^y^*^- "*>" l251 
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The impulse per unit area will be 

6f ^y^<r.     y       /Sy*a)t//\ [26] 

If the impulse is uniform 

&*'*) -1 

and 

fJi = \/v  ^ 
7r«-£ [27] 

It should be emphasized that the expressions for the impulse hold 
when the shell has reached its final state of deformation and has 
come to rest or when an unstable point is reached where the kinetic 
energy is zero. 

C. Static loading 

In the case of static loading the energy of deformation is equated 
to the work done by the applied load.  The result will be a curve of 
load vs deflection.  The static buckling or collapse load can then 
be obtained in a similar fashion as described brfore; i.e. first the 
energy deflection relation is plotted and the deflection at which 
instability or collapse occurs is determined as shown in Fig. 2. The 
load corresponding to this deflection then defines the static buck- 
ling or collapse load.  Since the energy-deflection relation will in 
general be nonlinear and probably will not contain sharp discontin- 
uities, the collapse load will not be well defined.  However it is 
expected that a region of collapse can be determined.  The work done 
1 i  the static loai will be 

where -jO    is the applied pressure and ^tT the lateral deflection. 
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D. A simple application 

Although extensive calculations will be done in the near future using 
the relations derived here, a very simple application will now be con- 
sidered in which the integrals can be evaluated analytically.  Con- 
sider the axially symmetric lateral loading of a perfectly plastic 
shell subjected to both static and dynamic loading which is assumed 
uniform over the shell.  The problem is to estimate the static col- 
lapse load and to determine the impulse-deflection relationship in 
the plastic region. 

4 
It has been found experimentally that cylindrical shells under 
axially symmetric external load usually collapse with a deformation 
pattern resembling two frustrums of a cone with a hinge circle at 
the center of the cylinder as shown in Fig. 6 

Fig. 6 Collapse Pattern of Cylindrical Shall 
under Axially Symmetric Load 

According to the sign convention used in this analysis JCATis  positive 
inward.  The axes and deformation pattern are shown in Figure 7. 

o „ '   x.    
wt ^ -—- TV<a^ 

^ 

-ur=^x X 

7r»«x/«lW AxtS 

^ 

<<AS= ~ -_**. 

T, 

Fig. 7 Deformation Pattern of Shell 
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Thus 

v- fe^^Jffinj-i^j* >tej£ * 
4 [291 

'o 
wW^ttWZJWf: >* 

Integrating 

1   VJ C*ifa' 

Assume that the shell and deformation pattern are such that* 

[30] 

*% **'        >     ^ >> / t311 

Thus the energy expression reduces to 

[32] 

For static loading the work done by the external uniform lateral 
j.oaa is 

This.will be true of the majority of practical cases. 
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<v=   arjsL />0 ^^Lf [33] 

Equating the internal energy absorbed by the shell to the work done 
by the external load it is found that 

7^ "§ ^%^ 4, ÖTVt [34] 

Expression [34] implies that the load will not be dependent on the 
deflectj ya  throughout the plastic region.  Therefore this load will 
correspc:.-:! to any deflection in the plastic region and can therefore 
be termed the static collapse load. 

It is interesting to note that the load corresponding to yield in an 
elastic shell with ordinary hoop tension is 

6<u * ^ [35] 

Thus [34] predicts that the static collapse load is about 15% higher 
than the load at which yielding will start. 

For shells in which v^ is not much greater than unity higher order 
terms in the energy must be included.  If second order terms in ^^yfy^ 
are retained in [30] the energy becomes 

[36] 

Therefore   the   static   load-deflection  relation   in the plastic  region 
will   be 

*-ZJl&("it\) [37] 

This will give a load deflection curve which looks schematically as 
wn in Fig. 8. 
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9. Pc 

Fig. 8 Load Deflection Curve in Plastic Region 
Including Nonlinear Terms 

The effect of the nonlinear terms is to stiffen the shell so that 
the plastic deflection for a given load will be a definite value. 
For the linear case the collapse load would produce any plastic 
deflection. 

Using relations [32] or [36] with [27] the impulse-deflection curve 
in the plastic region can be obtained.  A schematic of the results 
using these two energy relationships is given in Figure 9. 

with [32] 

(ioM)\ "rejtA *r.JlJe* 138] 

with   [36] 

(2*fJLT* *** £€.Ji 
S3 139] 
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L 
/ 

/ 

bt<t**i~*   o/ pfas'f'ic   *9mM<* 

>^l 

Fig. 9 Impulse Deflection Relation 

The static collapse load aoes not define collapse in a dynamic prob- 
lem.  In fact if the load is applied dynamically the actual magni- 
tude of the load can be much greater than the static collapse load 
and still not result in plastic deformation.  It is the load-time 
relation that is important and the impulse is a lumped parameter 
which essentially is a measure of the load time history. 

III. Discussion 

The great advantage of the energy absorption method as described 
here and elsewhere in the literature   is that many complications 
can be considered in the analysis and still result in a tractable 
problem.  For example it is seen that we have considered here non- 
linearity in the strains, strain hardening in the stress-strain 
law and nonuniform dynamic loading.  This type of theory has one 
main disadvantage - we have to assume a deflection pattern.  How- 
ever it must be realized that even in the more sophisticated plas- 
ticity theories assumptions on the pattern must also be made. 

Based on careful study of the existing plasticity flow theories of 
today it is difficult for this author to see how the important com- 
plications such as nonlinearity in the strains and stress-strain law 
in addition to nonuniform dynamic loading can be included and result 
in a solvable problem.  In such plastic dynamic biaxial stress prob- 
lems this author sees very little hope for any but the deformation 
theories and the energy type procedure for actually getting reasonable 
answers in a reasonable time. 
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